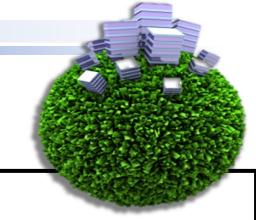


Life Cycle Assessment for Clickshare Button Product

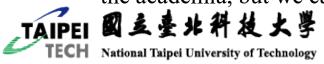


NTUT IEEM Hu, Allen H. Professor Team

Sustainability, Innovation and Assessment Center (SIAC)

Project Description

Project Objectives

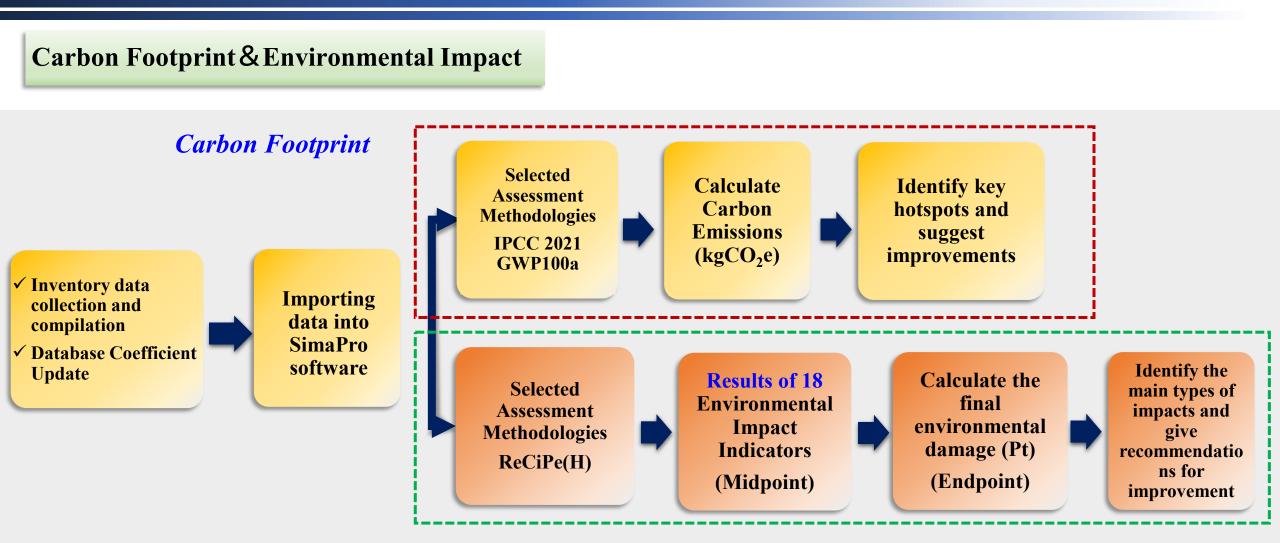

USI Green Product Lifecycle Assessment and Counseling – Clickshare Button Product Study

Project Implementation Framework

The Green Product Lifecycle Assessment and Counseling Project is planned for one year, with the goal of promoting the establishment of product LCA, and at the same time, through counseling and training, strengthening the ability to implement product LCA, to fulfill the corporate social responsibility, to give full play to the influence of the semiconductor industry, and to improve the performance of international sustainability questionnaires (e.g., DJSI, CDP, etc.).

• Anticipated Benefits

- 1) Perform life cycle assessment on the target product to assist the investment control subsidiary to more comprehensively identify the environmental impacts associated with the product production process, as well as to identify improvement hotspots in the production process, and to fulfill its corporate social responsibility.
- 2) Through this year's project work program, not only can we achieve further exchanges between the industry and the academia, but we can also combine academic theories to meet the needs of the commissioning unit.

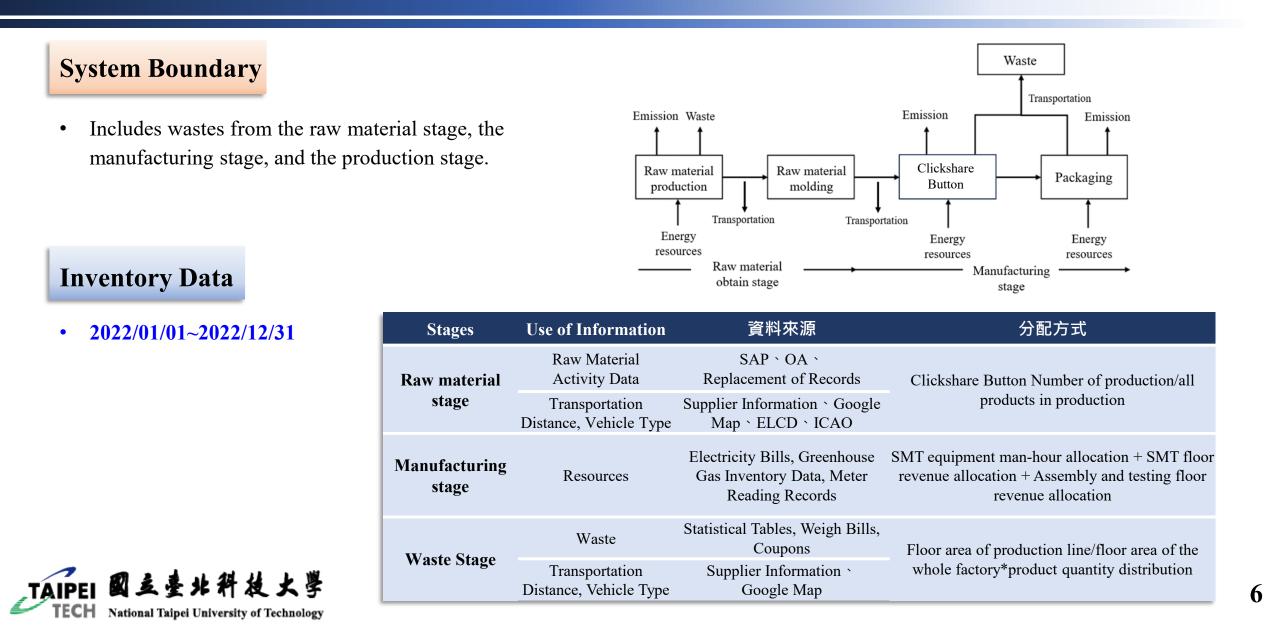


Research Target

TECH National Taipei University of Technology

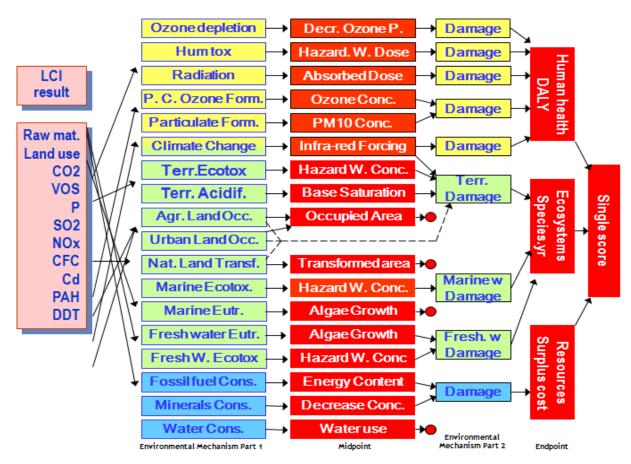
Target Product	Clickshare Button
Functional unit	The production of one Clickshare Button product
System Boundary	B2B (Raw materials, manufacturing, waste)
Software	SimaPro 9.4.0.1
Database Use	Ecoinvent 3.8
Inventory Data	USI provides data on energy inputs, and the data collection period is one year.
Carbon Footprint	IPCC 2021 GWP100a
Environmental Impact	ReCiPe (H) Midpoint ` Endpoint
EI 國立臺北科技大學	

Clickshare Button Impact Assessment Execution Process


Environmental Impact

永續創新與評估中心

Sustainability, Innovation and Assessment Center (SIAC)

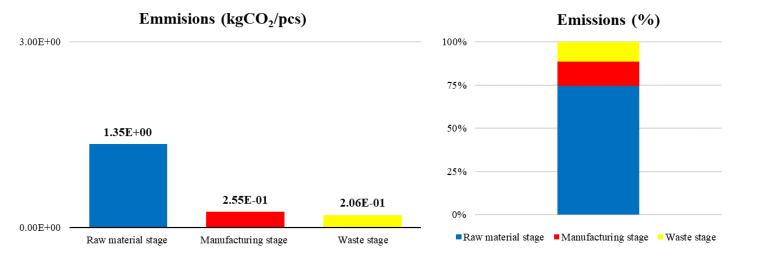

Clickshare Button Environmental Impact Implementation Process

永續創新與評估中心 Sustainability, Innovation and Assessment Center (SIAC)

ReCiPe methodologies

- ReCiPe is a methodology developed based on two existing methods, CML 2001 and Eco-indicator 99, making it one of the relatively newer environmental impact assessment methods (Goedkoop et al., 2013). ReCiPe encompasses the most extensive range of environmental impact categories among current existing methods (Heinonen et al., 2016) and can be used for comparative analyses of various environmental impact and damage categories (Korol et al., 2016).
- A significant feature of the ReCiPe methodology is that the normalization factors between midpoint and endpoint methods are consistent. Therefore, when evaluating damage results, the ReCiPe life cycle impact assessment method is recommended for use (Dong and Ng, 2014).

Clickshare Button Carbon Footprint Assessment Results


Clickshare Button Carbon Footprint Assessment Results

Sustainability, Innovation and Assessment Center (SIAC)

永續創新與評估中心

Carbon Footprint Assessment Results

- ✓ Using the life cycle assessment software SimaPro and the IPCC 2021 GWP100a methodology, we examined the carbon emissions of Clickshare Button products and found that the total carbon emissions were 1.81 kgCO₂e/pcs.
- ✓ The raw material stage (1.35 kgCO₂e/pcs) has a higher carbon footprint than the manufacturing stage (0.255 kgCO₂e/pcs).

Critical	Material
Critical	Material

 ✓ Electricity used in manufacturing processes is a major hotspot for carbon emissions.

Number	Categorization	tegorization Name Carbon footprint (kgCO ₂ e/pcs)		Percentage
Manufa	cturing stage	Electricity	2.55E-01	14.05%
M1	Raw materials	РСВ	3.03E-01	16.72%
M77	Raw materials	USB	3.17E-01	17.48%
M43	Raw materials	IC PROCESSOR	6.62E-02	3.65%
M50	Raw materials	IC VOLTAGE MONITORS	6.61E-02	3.65%

Clickshare Button Environmental Impact Assessment Results

Clickshare Button Environmental Impact Assessment Results 永續創新與評估中心

Lifecycle Assessment Results (Midpoint)

Using the life cycle assessment software SimaPro and the ReCiPe 2016 Midpoint (H) methodology, the impacts of Clickshare Button's products on 18 environmental indicators were examined, and the results showed that the raw material stage had a more significant impact on most of the indicators, followed by the manufacturing stage.

Water consumption	35.42%	0.30%	64.18%	0.109
Fossil resource scarcity	38.05%	2. <mark>08</mark> %	59.79%	0.089
Mineral resource scarcity		90.84%		0.4 <mark>1%69%0</mark> 59
Land use		94.66%		0.5 5.780 1
Human non-carcinogenic		81.70%		0.58% 15.26% 2.45%
Human carcinogenic toxicity		70.14%	0.69%	28.35% 0.82%
Marine ecotoxicity		79.10%		0.30% 18.34% 2. <mark>26</mark> %
Freshwater ecotoxicity		78.31%	0	<mark>.19% 19.20% 2.<mark>29</mark>%</mark>
Terrestrial ecotoxicity		78.56%		6.09% 15.21% 0.149
Marine eutrophication		88.40%		0.18%1.26%0.16%
Freshwater eutrophication		70.35%	0.68%	28.37% 0.6 <mark>0</mark> %
Terrestrial acidification	19.28% 0.60%		80.07%	0.059
Ozone formation, Terrestrial	30.09% 2		67.68%	0.119
Fine particulate matter	22.38% 0.6 <mark>8%</mark>		76.88%	0.069
Ozone formation, Human.	29.64% 2	.10%	68.15%	0.119
Ionizing radiation	49.28%	0.9 <mark>3</mark> %	6 49.68	% 0.129
Stratospheric ozone depletion	40.14%	0.79%	58.42%	0.649
Global warming	26.24% 1.23%	6	72.05%	0.47%

Raw material Transportation Manufacture Manufacture (Waste)

Clickshare Button Environmental Impact Assessment Results, Innovation and Assessment Center (SIAC)

Midpoint			Ν	ormaliza	ation			W	eighting			E	ndpoint	
Impact category	Unit	Characterization	Unit	Weighting	Standardiza tion		Unit	Weighting	Damage	Percent age				
Global warming, Human health	DALY	1.30E-05	Pt	41.7	5.43E-04	1	Pt	300	1.63E-01	29.16%				
Stratospheric ozone depletion	DALY	4.92E-09	Pt	41.7	2.05E-07		Pt	300	6.16E-05	0.01%		Human		
Ionizing radiation	DALY	3.28E-09	Pt	41.7	1.37E-07		Pt	300	4.10E-05	0.01%		health		
Ozone formation, Human health	DALY	3.93E-08	Pt	41.7	1.64E-06		Pt	300	4.92E-04	0.09%		5.30E-01	_	
Fine particulate matter formation	DALY	2.24E-05	Pt	41.7	9.34E-04		Pt	300	2.80E-01	50.09%				
Human carcinogenic toxicity	DALY	1.73E-06	Pt	41.7	7.20E-05		Pt	300	2.16E-02	3.86%				
Human non-carcinogenic toxicity	DALY	4.86E-06	Pt	41.7	2.03E-04		Pt	300	6.08E-02	10.88%				
Water consumption, Human health	DALY	2.85E-07	Pt	41.7	1.19E-05		Pt	300	3.56E-03	0.64%				
Global warming, Terrestrial ecosystems	species.yr	3.93E-08	Pt	676	2.66E-05		Pt	400	1.06E-02	1.90%				
Global warming, Freshwater ecosystems	species.yr	1.07E-12	Pt	676	7.26E-10		Pt	400	2.90E-07	0.00%				ingle
Ozone formation, Terrestrial ecosystems	species.yr	5.62E-09	Pt	676	3.80E-06		Pt	400	1.52E-03	0.27%			S	score
Terrestrial acidification	species.yr	2.00E-08	Pt	676	1.35E-05		Pt	400	5.40E-03	0.97%			5.5	59E-01
Freshwater eutrophication	species.yr	3.36E-09	Pt	676	2.27E-06		Pt	400	9.09E-04	0.16%		Ecosystems		
Marine eutrophication	species.yr	1.41E-12	Pt	676	9.51E-10		Pt	400	3.80E-07	0.00%	→ [2.40E-02	Η	
Terrestrial ecotoxicity	species.yr	5.83E-10	Pt	676	3.94E-07		Pt	400	1.58E-04	0.03%				
Freshwater ecotoxicity	species.yr	8.93E-10	Pt	676	6.04E-07		Pt	400	2.42E-04	0.04%				
Marine ecotoxicity	species.yr	1.79E-10	Pt	676	1.21E-07		Pt	400	4.84E-05	0.01%				
Land use	species.yr	1.73E-08	Pt	676	1.17E-05		Pt	400	4.69E-03	0.84%				
Water consumption, Terrestrial ecosystem	species.yr	1.78E-09	Pt	676	1.20E-06		Pt	400	4.81E-04	0.09%				
Water consumption, Aquatic ecosystems	species.yr	2.11E-13	Pt	676	1.42E-10		Pt	400	5.70E-08	0.00%		Resources		
Mineral resource scarcity	\$	1.71E-02	Pt	3.57E-05	6.09E-07		Pt	300	1.83E-04	0.03%	-• T	5.84E-03		
Fossil resource scarcity	\$	5.29E-01	Pt	3.57E-05	1.89E-05		Pt	300	5.66E-03	1.01%				

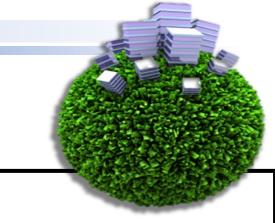
TAIPEI 國意臺北斜後大學 TECH National Taipei University of Technology

Environmental Impact & Critical Material Sequencing

永續創新與評估中心 Sustainability, Innovation and Assessment Center (SIAC)

Environmental Impact

ReCiPe(H)- Lifecycle Assessment Results					
Environmental Impact	Priority				
(Percentage of damage)	Clickshare Button				
Fine particulate matter formation	1 2.80E-01 Pt (50.06%)				
Global warming, Human health	2 1.63E-01 Pt (29.12%)				
Human non-carcinogenic toxicity	3 6.08E-02 Pt (10.87%)				
PEI 剧系宝가打很大学					


National Taipei University of Technology

Critical Material

Number	Categorization	Name	Damage	Percentage
M1	Raw material	PCB FR4 8L 9P	1.34E-03	16.72%
M77	Raw material	USB Cable ASSY	1.28E-03	17.48%
Process	Process input	Electricity	3.60E-01	14.05%

- ✓ In Clickshare Button's environmental impact assessment, the key materials at the raw material stage are PCB and USB Cable, which come from M1 and M77.
- \checkmark The critical material at the manufacturing stage is electricity.

Conclusion and Recommendation

Conclusion and Recommendation

- ✓ From the results of Clickshare Button's Carbon Footprint and Environmental Impact Critical Raw Materials, power input in the manufacturing process is one of the hotspots, with a share of 14.05% and 20.11% respectively.
- ✓ →It is recommended to reduce the proportion of traditional electricity input and increase the use of electricity (purchased green energy) in the manufacturing process to improve the damaging effects.
- ✓ In the ranking of critical raw materials (except for the process stage), PCB, USB Cable ASSY, and IC PROCESSOR used in the raw material stage are the hotspots that affect carbon emissions.
- \checkmark \rightarrow It is recommended to optimize the ratio of inputs of these critical raw materials to strengthen raw material management and avoid unnecessary consumption, thus improving the environmental impact.

Thank you for your attention

