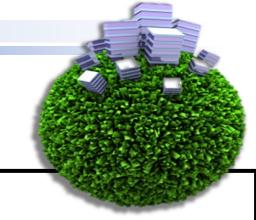


Life Cycle Assessment for Industrial Tablet Product



NTUT IEEM Hu, Allen H. Professor Team

Sustainability, Innovation and Assessment Center (SIAC)

Project Description

• Project Objectives

USI Green Product Lifecycle Assessment and Counseling – Industrial Tablet Study

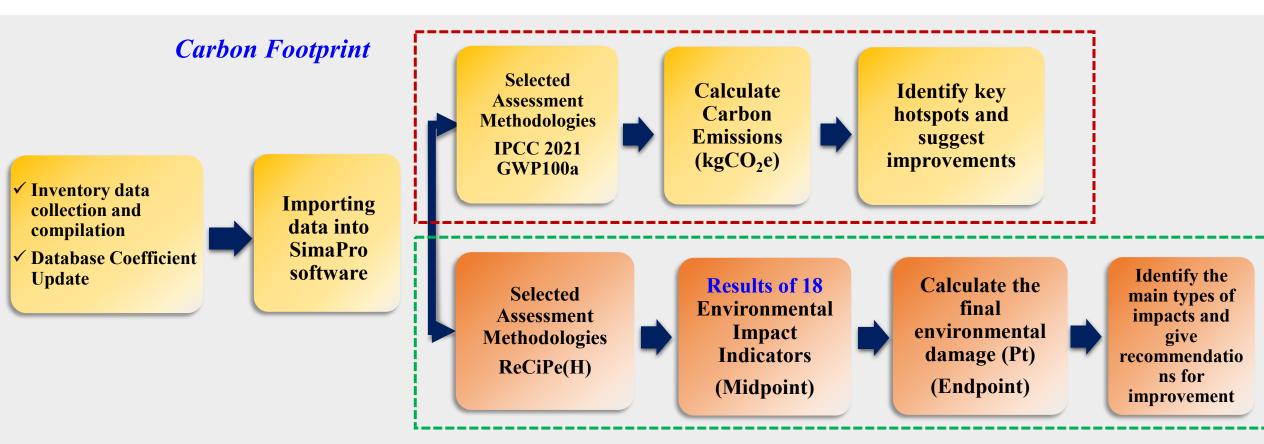
Project Implementation Framework

The Green Product Lifecycle Assessment and Counseling Project is planned for one year, with the goal of promoting the establishment of product LCA, and at the same time, through counseling and training, strengthening the ability to implement product LCA, to fulfill the corporate social responsibility, to give full play to the influence of the semiconductor industry, and to improve the performance of international sustainability questionnaires (e.g., DJSI, CDP, etc.).

• Anticipated Benefits

- 1) Perform life cycle assessment on the target product to assist the investment control subsidiary to more comprehensively identify the environmental impacts associated with the product production process, as well as to identify improvement hotspots in the production process, and to fulfill its corporate social responsibility.
- 2) Through this year's project work program, not only can we achieve further exchanges between the industry and the academia, but we can also combine academic theories to meet the needs of the commissioning unit.

Research Target

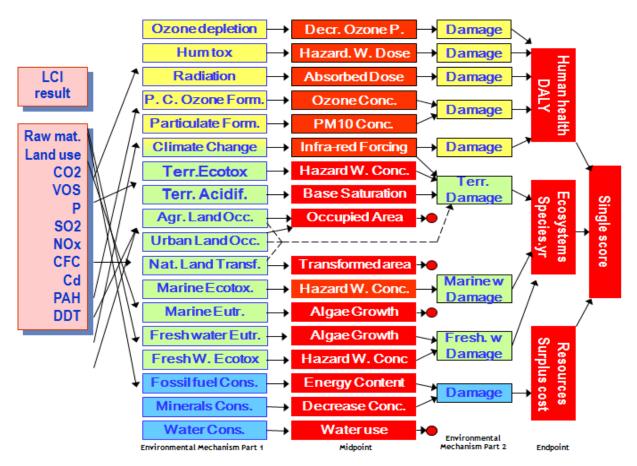

Target Product	Industrial Tablet				
Functional unit	The production of one Industrial Tablet product				
System Boundary	B2B (Raw materials, manufacturing, waste)				
Software	SimaPro 9.4.0.1				
Database Use	Ecoinvent 3.8				
Inventory Data	USI provides data on energy inputs, and the data collection period is one year.				
Carbon Footprint	IPCC 2021 GWP100a				
Environmental Impact	ReCiPe (H) Midpoint [、] Endpoint				

Industrial Tablet Impact Assessment Execution Process

TAIPEI 國支臺北科技大學 TECH National Taipei University of Technology **Environmental Impact**

5

Industrial Tablet Environmental Impact Implementation Process


System Boundary Waste Transportation Emission Emission Waste Emission Includes wastes from the raw material stage, the • manufacturing stage, and the production stage. Industrial Raw material Raw material Packaging Tablet molding production Transportation Transportation Energy Energy Energy resources resources resources **Inventory Data** Raw material Manufacturing obtain stage stage **Use of Information** 資料來源 分配方式 **Stages** 2022/01/01~2022/12/31 • **Raw Material** SAP \ OA \ Activity Data Replacement of Records **Raw material** Industrial Tablet Number of production/all products in production stage Transportation Supplier Information
`Google Distance, Vehicle Type Map 、 ELCD 、 ICAO Electricity Bills, Greenhouse Manufacturing Floor area of production line/floor area of the Gas Inventory Data, Meter Resources whole factory stage **Reading Records** Statistical Tables, Weigh Bills, Waste Coupons Floor area of production line/floor area of the Waste Stage whole factory*product quantity distribution Transportation Supplier Information **`** Distance, Vehicle Type Google Map 6 National Taipei University of Technology

永續創新與評估中心

Sustainability, Innovation and Assessment Center (SIAC)

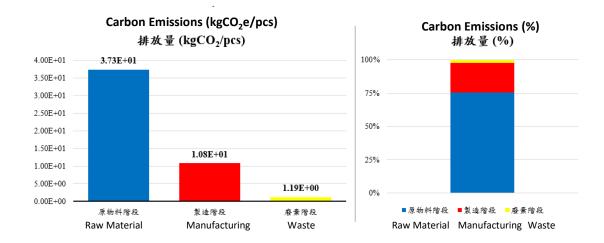
ReCiPe methodologies

- ReCiPe is a methodology developed based on two existing methods, CML 2001 and Eco-indicator 99, making it one of the relatively newer environmental impact assessment methods (Goedkoop et al., 2013). ReCiPe encompasses the most extensive range of environmental impact categories among current existing methods (Heinonen et al., 2016) and can be used for comparative analyses of various environmental impact and damage categories (Korol et al., 2016).
- A significant feature of the ReCiPe methodology is that the normalization factors between midpoint and endpoint methods are consistent. Therefore, when evaluating damage results, the ReCiPe life cycle impact assessment method is recommended for use (Dong and Ng, 2014).

永續創新與評估中

Sustainability, Innovation and Assessment Center (SIAC)

Industrial Tablet Carbon Footprint Assessment Results



Industrial Tablet Carbon Footprint Assessment Results

永續創新與評估中心 Sustainability, Innovation and Assessment Center (SIAC)

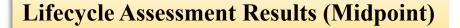
Carbon Footprint Assessment Results

- ✓ Using the life cycle assessment software SimaPro and the IPCC 2021 GWP100a methodology, we examined the carbon emissions of Industrial Tablet products and found that the total carbon emissions were 49.2 kgCO₂e/pcs.
- ✓ The raw material stage (37.3 kgCO₂e/pcs) has a higher carbon footprint than the manufacturing stage (10.8 kgCO₂e/pcs).

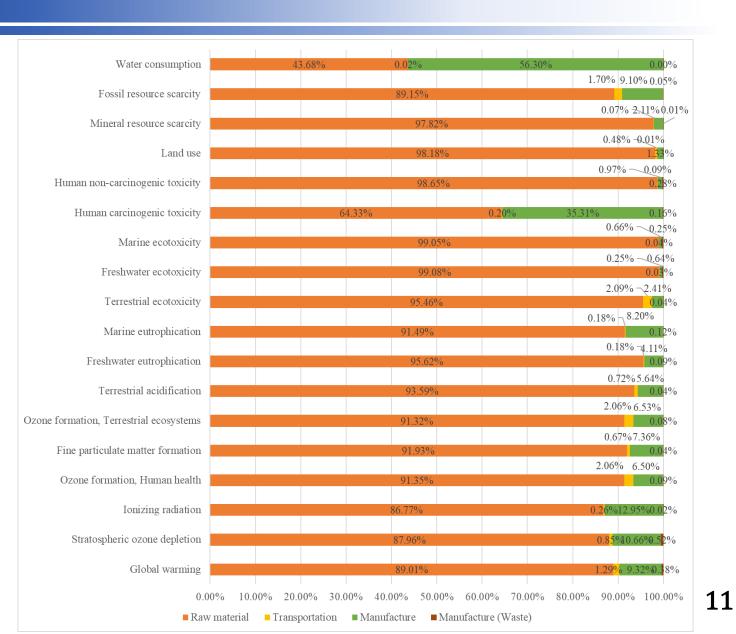
Critical	Material
----------	----------

 ✓ Electricity used in manufacturing processes is a major hotspot for carbon emissions.

Number	Categorization	ation Name Carbon for (kgCO ₂ e		Percentage
Manufac	turing stage	Electricity	1.08E+01	21.95%
M143	Raw materials	WAN	8.52E+00	16.89%
M190	Raw materials	FRAME	3.27E+00	6.48%
M221	Raw materials	GASKET	1.94E+00	3.85%
M283	Raw materials	ASS'Y(TP+DISP)	1.83E+00	3.62%



Industrial Tablet Environmental Impact Assessment Results


Industrial Tablet Environmental Impact Assessment Results

永續創新與評估中心 Sustainability, Innovation and Assessment Center (SIAC)

Using the life cycle assessment software SimaPro and the ReCiPe 2016 Midpoint(H) methodology, the impacts of Industrial Tablet products on 18 environmental indicators were explored, and the results showed that the impacts of the raw materials phase were more significant for most of the indicator categories.

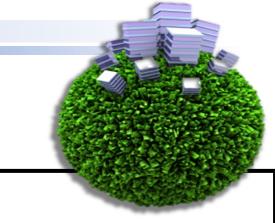
Industrial Tablet Environmental Impact Assessment Results

Midpoint			Ν	ormaliza	ation		W	eighting		E	ndpoint
Impact category	Unit	Characterization	Unit	Weighting	Standardi zation	Unit	Weighting	Damage	Percenta ge		
Global warming, Human health	DALY	2.29E-04	Pt	41.7	9.57E-03	Pt	300	2.87E+00	26.46%		
Stratospheric ozone depletion	DALY	7.48E-08	Pt	41.7	3.12E-06	Pt	300	9.36E-04	0.01%	Human	
Ionizing radiation	DALY	8.76E-08	Pt	41.7	3.65E-06	Pt	300	1.10E-03	0.00%	health	
Ozone formation, Human health	DALY	6.90E-07	Pt	41.7	2.88E-05	Pt	300	8.63E-03	0.03%	1.12E+01	
Fine particulate matter formation	DALY	4.28E-04	Pt	41.7	1.78E-02	Pt	300	5.35E+00	10.01%		
Human carcinogenic toxicity	DALY	3.20E-05	Pt	41.7	1.33E-03	Pt	300	4.00E-01	6.26%		
Human non-carcinogenic toxicity	DALY	2.00E-04	Pt	41.7	8.33E-03	Pt	300	2.50E+00	54.21%		
Water consumption, Human health	DALY	4.09E-06	Pt	41.7	1.70E-04	Pt	300	5.11E-02	0.10%		
Global warming, Terrestrial ecosystems	species.yr	6.93E-07	Pt	676	4.68E-04	Pt	400	1.87E-01	1.73%		
Global warming, Freshwater ecosystems	species.yr	1.89E-11	Pt	676	1.28E-08	Pt	400	5.11E-06	0.00%		Single Single
Ozone formation, Terrestrial ecosystems	species.yr	9.84E-08	Pt	676	6.65E-05	Pt	400	2.66E-02	0.08%		score
Terrestrial acidification	species.yr	3.76E-07	Pt	676	2.54E-04	Pt	400	1.02E-01	0.15%	(1.17E+0
Freshwater eutrophication	species.yr	9.02E-08	Pt	676	6.10E-05	Pt	400	2.44E-02	0.21%	Ecosystems	
Marine eutrophication	species.yr	1.02E-11	Pt	676	6.89E-09	Pt	400	2.76E-06	0.00%	4.01E-01	н
Terrestrial ecotoxicity	species.yr	1.23E-08	Pt	676	8.33E-06	Pt	400	3.33E-03	0.01%	-	·
Freshwater ecotoxicity	species.yr	4.03E-08	Pt	676	2.72E-05	Pt	400	1.09E-02	0.19%		
Marine ecotoxicity	species.yr	8.00E-09	Pt	676	5.40E-06	Pt	400	2.16E-03	0.04%		
Land use	species.yr	1.41E-07	Pt	676	9.51E-05	Pt	400	3.80E-02	0.07%		
Water consumption, Terrestrial ecosystem	species.yr	2.59E-08	Pt	676	1.75E-05	Pt	400	7.01E-03	0.01%	_	
Water consumption, Aquatic ecosystems	species.yr	3.55E-12	Pt	676	2.40E-09	Pt	400	9.59E-07	0.00%	Resources	
Mineral resource scarcity	\$	6.54E-01	Pt	3.57E-05	2.34E-05	Pt	300	7.01E-03	0.06%	→ 8.20E-02	
Fossil resource scarcity	\$	7.00E+00	Pt	3.57E-05	2.50E-04	Pt	300	7.50E-02	0.36%		-

Environmental Impact & Critical Material Sequencing

永續創新與評估中心 Sustainability, Innovation and Assessment Center (SIAC)

Environmental Impact


ReCiPe(H)- Lifecycle Assessment Results					
Environmental Impact (Percentage of damage)	Priority Industrial Tablet				
Fine particulate matter formation	1 5.35E+00 Pt (45.86%)				
Global warming, Human health	2 2.87E+00 Pt (24.61%)				
Human non-carcinogenic toxicity	3 2.50E+00 Pt (21.43%				
PEI 购 冬 实 并 们 农 入 子 ECH National Taipei University of Technology					

Critical Material

Number	Categorization	Name	Damage	Percentage
M143	Raw material	WAN sku WIFI2	4.03E+00	34.40%
M144	Raw material	WAN sku WIFI1	4.03E+00	34.40%
Process	Process input	Electricity	2.75E+00	23.50%

- ✓ In Industrial Tablet's environmental impact assessment, the key materials at the raw material stage are WiFi component, which come from M143 and M144.
- \checkmark The critical material at the manufacturing stage is electricity.

Conclusion and Recommendation

Conclusion and Recommendation

- ✓ According to Industrial Tablet's carbon footprint and environmental impact ranking of key raw materials, electricity input in the manufacturing process is one of the hotspots, accounting for 23.52% and 23.50% respectively.
- \checkmark \rightarrow It is recommended to reduce the proportion of traditional electricity input and increase the use of electricity (purchased green energy) in the manufacturing process to improve the damaging effects.
- ✓ In the ranking of critical material (except for the process stage), M143, M190, and M221 used in the raw material stage are the hotspots affecting carbon emissions; M143 is also the hotspot affecting environmental impact.
- ✓ →It is recommended to optimize the ratio of inputs of these critical raw materials to strengthen raw material management and avoid unnecessary consumption, or to use alternative raw materials with lower environmental impacts to improve their environmental impacts.

Thank you for your attention

